
II – Introductory C++ Concepts 

 

 

CIS27 - Programming in C++       1 

 

 
 

Dynamic Memory Allocation 

 

 

In C and C++ three types of memory are used by programs: 

 

Static memory - where global and static variables live 

 

Stack memory - "scratch pad" memory that is used by automatic variables. 

 

Heap memory - (or free store memory) memory that may be dynamically allocated at execution 

time.  This memory must be "managed".  This memory is accessed using pointers.            

 

 

Computer Memory 

 

  

 

Static Memory 

Global Variables 

Static Variables 

 

 

Heap Memory (or free store) 

Dynamically Allocated Memory 

(Unnamed variables) 

 

 

Stack Memory 

Auto Variables 

Function parameters 

 

 

 

In C, the malloc(), calloc(), and realloc() functions are used to dynamically allocate memory 

from the Heap. 

 

In C++, this is accomplished using the new and delete operators. 

 

Dynamic memory allocation permits the user to create "variable-length" arrays, since only the 

memory that is needed may be allocated. 



II – Introductory C++ Concepts 

 

 

CIS27 - Programming in C++       2 

 

 
 

The new operator 

 

new is used to allocate memory during execution time.  new returns a pointer to the address 

where the object is to be stored.  new always returns a pointer to the type that follows the new. 

 

Example:  allocate memory for 1 int 

 
int *p;  // declare a pointer to int 

p = new int; // p points to the heap space allocated for the int 

 

 

Example:  allocate memory for a float value 

 
float *f = new float;  // f points to a float in the heap space 

 

 

More examples: 

 
char* ptr_char = new char; 

 

double *trouble = new double; 

 

int** ptr_ptr_int = new int*; 

 

 

 

struct employee_record 

{ 

  char empno[7]; 

  char name[26]; 

  char orgn[5]; 

  float salary; 

  ... 

}; 

 

 

employee_record* harry = new employee_record; 

 

 What is harry? 

 
 

int *p = new int(6);  // allocated and assigns 

 

 

 



II – Introductory C++ Concepts 

 

 

CIS27 - Programming in C++       3 

 

 
 

Dynamic Memory Allocation for Arrays 

 

Example - allocate memory for 10 ints 

 
int* ten_ints = new int[10]; 

 

ten_ints is a pointer to the first of 10 ints.  They will be stored in contiguous memory, so that you 

can access the memory like an array.  For example, ten_ints[0] is the address of the first int in 

heap memory, ten_ints[1] is the address of the second int and so on … 

 

It sort of looks like this: 

 

Stack memory     Heap memory 

 

 ten_ints 

 

                

 

 

Type* pType = new Type[25]; 

 

Note:  Even though you allocate memory for an array of Type with new, it always returns a 

pointer to the Type. 

 

 

Example - allocate memory for a two-dimensional array 

 
int (*p2d)[4] = new int[3][4]; 

 

Example - allocate memory for a string 

 
char* text = new char[4]; 

strcpy(text,"hey"); 

 

If you attempt to dynamically allocate memory and it is not available, new will throw a 

bad_alloc exception.  In pre-standard C++ new would return a value of 0 (or a null pointer), like 

malloc() in C, and most C++ programmers would use a test for 0 to check for failure of the 

allocation.  Even though compiler manufacturers were slow to adopt this policy, most now 

conform to this standard.  In this age of vast memory sizes, the failure of new is uncommon and 

more often than not, indicates a problem from a different source.  Programmers are advised to 

adopt exception handling techniques (not covered in this course) for identification of this 

situation. 

 

Note: you may not initialize a dynamically allocated array as you do a single value.  

Specifically,  

 int* pi = new int[5](0); // this is illegal 



II – Introductory C++ Concepts 

 

 

CIS27 - Programming in C++       4 

 

 
 

The delete operator 

 

The delete operator is used to release the memory that was previously allocated with new.  The 

delete operator does not clear the released memory, nor does it change the value of the pointer 

that holds the address of the allocated memory.  It is probably a good idea to set the pointer to 

the released memory to 0.  To release memory for an array that was allocated dynamically, use [] 

(empty braces) after the delete operator. 

 

Examples: 

 
int *pi = new int; 

… 

delete pi; 

double *pd = new double[100]; 

… 

delete [] pd; 

 

Example 2-5 - Dynamic memory allocation 

 

1  // File:  ex2-5.cpp 

2   

3  #include <iostream> 

4  #include <cstdlib> 

5  #include <new> 

6  using namespace std; 

7   

8  int main(void) 

9  { 

10    

11   int i; 

12   int* pint; 

13   try { 

14    pint = new int[99999]; 

15    cout << "memory is cheap\n"; 

16   } 

17   // if the dynamic memory allocation fails, new throws a bad_alloc 

18   catch (bad_alloc& uhoh) { 

19    cerr << uhoh.what() << endl;    //displays "bad allocation" 

20   } 

21    

22   for (i = 0; i < 99999; i++) pint[i] = 0; 

23    

24   delete [] pint; 

25    

26   pint = 0; 

27  } 

 
******  Output  ****** 

memory is cheap 



II – Introductory C++ Concepts 

 

 

CIS27 - Programming in C++       5 

 

 
 

Example 2-6 - Dynamic Memory Allocation for char arrays 

 

This example illustrates dynamically allocating memory to store char arrays.  Storage for an 

array of pointers to the char arrays is not (but could be) allocated dynamically.  Note each char 

array (name) can have a different length.  Only the space required for each char array is 

allocated. 

 

1  // File: ex2-6.cpp 

2   

3  #include <iostream> 

4  #include <cstring> 

5  using namespace std; 

6   

7  int main(void) 

8  { 

9   int i; 

10   char * names[7];        // declare array of pointers to char 

11   char temp[16]; 

12    

13   // read in 7 names and dynamically allocate storage for each 

14   for (i = 0; i < 7; i++) 

15   { 

16    cout << "Enter a name => "; 

17    cin >> temp; 

18    names[i] = new char[strlen(temp) + 1]; 

19     

20    // copy the name to the newly allocated address 

21    strcpy(names[i],temp); 

22   } 

23    

24   // print out the names 

25   for (i = 0; i < 7; i ++) cout << names[i] << endl; 

26    

27   // return the allocated memory for each name 

28   for (i = 0; i < 7; i++) delete [] names[i]; 

29   return 0; 

30  } 

 
******  Sample Run  ****** 

 

Enter a name => Joe 

Enter a name => Bob 

Enter a name => Harry 

Enter a name => Mary 

Enter a name => Fred 

Enter a name => Frank 

Enter a name => Susan 

Joe 

Bob 

Harry 



II – Introductory C++ Concepts 

 

 

CIS27 - Programming in C++       6 

 

 
 

Mary 

Fred 

Frank 

Susan 

 

The following illustrates the memory used in the last example: 

 

Stack Memory      Heap Memory    

 

        names 

        J o e \0 

        B o b \0 

        H a r r y \0 

        M a r y \0 

        F r e d \0 

        F r a n k \0 

        S u s a n \0 

 

 

Here’s another solution for the last problem: 

 

Example 2-7 - Dynamic Memory Allocation for char arrays 

1  // File: ex2-7.cpp 

2   

3  #include <iostream> 

4  #include <cstring> 

5  using namespace std; 

6   

7  int main(void) 

8  { 

9   int i; 

10   char ** names;        // declare pointer to pointer to char 

11   char temp[16]; 

12   int NumberOfNames = 7; 

13    

14   names = new char*[NumberOfNames]; 

15    

16   // read in 7 names and dynamically allocate storage for each 

17   for (i = 0; i < NumberOfNames; i++) 

18   { 

19    cout << "Enter a name => "; 

20    cin >> temp; 

21    names[i] = new char[strlen(temp) + 1]; 

22     

23    // copy the name to the newly allocated address 

24    strcpy(names[i],temp); 

25   } 

26    

27   // print out the names 



II – Introductory C++ Concepts 

 

 

CIS27 - Programming in C++       7 

 

 
 

28   for (i = 0; i < NumberOfNames; i ++) cout << names[i] << endl; 

29    

30   // return the allocated memory for each name 

31   for (i = 0; i < NumberOfNames; i++) delete [] names[i]; 

32    

33   delete [] names; 

34   return 0; 

35  } 

 

******  Sample Run  ****** 

 

Enter a name => Joe 

Enter a name => Bob 

Enter a name => Harry 

Enter a name => Mary 

Enter a name => Fred 

Enter a name => Frank 

Enter a name => Susan 

Joe 

Bob 

Harry 

Mary 

Fred 

Frank 

Susan 

 

 

Here is what memory looks like for this example: 

 

 

Stack      Heap Memory                         

 

  names 

        J o e \0 

        B o b \0 

        H a r r y \0 

        M a r y \0 

        F r e d \0 

        F r a n k \0 

        S u s a n \0 

 

 

 

 What happens on line 20 when the user enters a name longer than 16 characters? 


